A generalized birthday approach for efficiently finding linear relations in ℓ-sequences
نویسندگان
چکیده
Feedback with Carry Shift Registers (FCSRs) have previously been available in two configurations, the Fibonacci and Galois architectures. Recently, a generalized and unifying FCSR structure and theory was presented. The new ring FCSRs model repairs some weaknesses of the older architectures. Most notably, the carry cell bias property that was exploited for an attack on the eSTREAM final portfolio cipher F-FCSR-H v2 is no longer possible for the updated (and unbroken) F-FCSR-H v3 stream cipher. In this paper we show how to exploit a particular set of linear relations in ring FCSR sequences. We show what biases can be expected, and we also present a generalized birthday algorithm for actually realizing these relations. As all prerequisites of a distinguishing attack are present, we explicitly show a new such attack on F-FCSR-H v3 with an online time complexity of only 2. The offline time complexity (for finding a linear relation) is 2. This is the first successful attack on F-FCSRH v3, the first attack to breach the exhaustive search complexity limit. Note that this attack is completely different from that of F-FCSR-H v2. We focus on this particular application in the paper, but the presented algorithm is actually very general. The algorithm can be applied to any FCSR automaton, so linearly filtered FCSRs and FCSR combiners may be particularly interesting targets for cryptanalysis.
منابع مشابه
Efficient Design of Compact Unstructured RNA Libraries Covering All k-mers
Current microarray technologies to determine RNA structure or measure protein-RNA interactions rely on single-stranded, unstructured RNA probes on a chip covering together all k-mers. Since space on the array is limited, the problem is to efficiently design a compact library of unstructured ℓ-long RNA probes, where each k-mer is covered at least p times. Ray et al. designed such a library for s...
متن کاملRegularization Paths for Generalized Linear Models via Coordinate Descent.
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multinomial regression problems while the penalties include ℓ(1) (the lasso), ℓ(2) (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path....
متن کاملStrongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.
متن کاملMoufang Loops and Generalized Lie-cartan Theorem *
Generalized Lie-Cartan theorem for linear birepresentations of an analytic Moufang loop is considered. The commutation relations of the generators of the birepresentation are found. In particular, the Lie algebra of the multiplication group of the birepresentation is explicitly given. 2000 MSC: 20N05, 17D10, 20G05 Dedicated to Maks A. Akivis on the occasion of his 85th birthday and 65 years of ...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Des. Codes Cryptography
دوره 74 شماره
صفحات -
تاریخ انتشار 2015